 Converting to Binary Number

## When counting in decimal, we use the number 0 ,

 $1,2,3,4,5,6,7,8,9 \ldots$ but what happens after 9 ? We place a 1 to the left, to give us 10. And after 99? We place a 1 again to the left to give 100.In decimal we can see that the place value increases by powers of 10 i.e. $1,10,100,1000, .$.

In binary we do something similar, but rather than the ten digits we have in decimal, we have two. So we have 0,1 then 10. We have $\mathbf{0 , 1 , 1 0 , 1 1}$ then $\mathbf{1 0 0}$. And so on. In binary the place values increase by powers of 2 i.e. $1,2,4,8,16,32, \ldots$


| Place | 8 | 4 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| Binary number |  | 1 | 0 | 1 |
|  |  | $4+0$ | $+1=5$ |  |

For example, the binary number 101 is the number 5 in decimal.

Can you use the playing cards to convert binary numbers to decimal numbers and visa-versa?


For each binary number provided turn the card over if it is a 0 . E.g. for the binary number 1011, we would have:

## Add up the remaining <br> Add up the remaining

 numbers: 8+2+1 = 11 . The binary number 1011 is the decimal number 11 See if you can work out the decimal numbers for the following binary numbers using the cards provided.| Binary Number | Decimal Number / Letter |
| :---: | :---: |
| 1 |  |
| 10 |  |
| 111 |  |
| 1011 |  |

Cracking
conversion
cards

Lay the playing cards out with increasing powers of 2:

-
Hewlett Packard
Enterprise
Enterprise

R1
$\pm$


FACT FILE

In computer memory, the transistors store single binary digits, called bits. These are usually stored in groups of 8 called a byte.

Bits and bytes are the basic building block of computer memory and bytes are used to define the size of memory e.g. in megabytes (MB) or gigabytes (GB)


Create a bracelet or keyring with your very own binary number code

Use the binary wheel to create a binary keyring or bracelet. Use the beads provided to create your binary numbers - use one colour of bead to represent " 0 " and another to represent " 1 ". You will need a third colour of bead to separate your binary numbers.

Select a button, any button will do!

## STAGE2

Select a piece of cord and cut to length.

## STAGE3

Thread each end of the cord through your button and tie securely.

